/* LinuxCNC_ArduinoConnector By Alexander Richter, info@theartoftinkering.com 2022 This Software is used as IO Expansion for LinuxCNC. Here i am using a Mega 2560. It is NOT intended for timing and security relevant IO's. Don't use it for Emergency Stops or Endstop switches! You can create as many digital & analog Inputs, Outputs and PWM Outputs as your Arduino can handle. You can also generate "virtual Pins" by using latching Potentiometers, which are connected to one analog Pin, but are read in Hal as individual Pins. Currently the Software provides: - analog Inputs - latching Potentiometers - 1 absolute encoder input - digital Inputs - digital Outputs The Send and receive Protocol is : To begin Transmitting Ready is send out and expects to receive E: to establish connection. Afterwards Data is exchanged. Data is only send everythime it changes once. Inputs = 'I' -write only -Pin State: 0,1 Outputs = 'O' -read only -Pin State: 0,1 PWM Outputs = 'P' -read only -Pin State: 0-255 Analog Inputs = 'A' -write only -Pin State: 0-1024 Latching Potentiometers = 'L' -write only -Pin State: 0-max Position Absolute Encoder input = 'K' -write only -Pin State: 0-32 Command 'E0:0' is used for connectivity checks and is send every 5 seconds as keep alive signal This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ //###IO's### #define DINPUTS #ifdef DINPUTS const int Inputs = 16; //number of inputs using internal Pullup resistor. (short to ground to trigger) int InPinmap[] = {32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48}; #endif #define OUTPUTS #ifdef OUTPUTS const int Outputs = 9; //number of outputs int OutPinmap[] = {10,9,8,7,6,5,4,3,2,21}; #endif #define PWMOUTPUTS #ifdef PWMOUTPUTS const int PwmOutputs = 2; //number of outputs int PwmOutPinmap[] = {13,11}; #endif #define AINPUTS #ifdef AINPUTS const int AInputs = 1; int AInPinmap[] = {A3}; //Potentiometer for SpindleSpeed override int smooth = 200; //number of samples to denoise ADC, try lower numbers on your setup #endif #define LPOTIS #ifdef LPOTIS const int LPotis = 2; int LPotiPins[LPotis][2] = { {96,8}, //Latching Knob Spindle Overdrive on A1, has 9 Positions {95,3} //Latching Knob Feed Resolution on A2, has 4 Positions }; int margin = 20; //giving it some margin so Numbers dont jitter, make this number smaller if your knob has more than 50 Positions #endif #define ABSENCODER #ifdef ABSENCODER const int AbsEncPins[] = {27,28,31,29,30}; //1,2,4,8,16 #endif #define STATUSLED #ifdef STATUSLED const int StatLedPin = 13; //Pin for Status LED const int StatLedErrDel[] = {1000,10}; //Blink Timing for Status LED Error (no connection) #endif //###Misc Settings### const int timeout = 10000; // timeout after 10 sec not receiving Stuff #define DEBUG //Variables for Saving States #ifdef DINPUTS int InState[Inputs]; int oldInState[Inputs]; #endif #ifdef OUTPUTS int OutState[Outputs]; int oldOutState[Outputs]; #endif #ifdef PWMOUTPUTS int OutPWMState[PwmOutputs]; int oldOutPWMState[PwmOutputs]; #endif #ifdef AINPUTS int oldAinput[AInputs]; #endif #ifdef LPOTIS int Lpoti[LPotis]; int oldLpoti[LPotis]; #endif #ifdef ABSENCODER int oldAbsEncState; #endif //### global Variables setup### //Please don't touch them unsigned long oldmillis = 0; unsigned long newcom = 0; unsigned long lastcom = 0; #define STATE_CMD 0 #define STATE_IO 1 #define STATE_VALUE 2 byte state = STATE_CMD; char inputbuffer[5]; byte bufferIndex = 0; char cmd = 0; uint16_t io = 0; uint16_t value = 0; void setup() { #ifdef DINPUTS //setting Inputs with internal Pullup Resistors for(int i= 0; i timeout){ StatLedErr(1000,10); } else{ digitalWrite(StatLedPin, HIGH); } } void StatLedErr(int offtime, int ontime){ unsigned long newMillis = millis(); if (newMillis - oldmillis >= offtime){ digitalWrite(StatLedPin, HIGH); } if (newMillis - oldmillis >= offtime+ontime){{ digitalWrite(StatLedPin, LOW); oldmillis = newMillis; } } } void sendData(char sig, int pin, int state){ Serial.print(sig); Serial.print(pin); Serial.print(":"); Serial.println(state); } void flushSerial(){ while (Serial.available() > 0) { Serial.read(); } } void writeOutputs(int Pin, int Stat){ for(int x = 0; x 0){ current = Serial.read(); switch(state){ case STATE_CMD: if(isCmdChar(current)){ cmd = current; state = STATE_IO; bufferIndex = 0; } break; case STATE_IO: if(isDigit(current)){ inputbuffer[bufferIndex++] = current; }else if(current == ':'){ inputbuffer[bufferIndex] = 0; io = atoi(inputbuffer); state = STATE_VALUE; bufferIndex = 0; } else{ #ifdef DEBUG Serial.print("Ungültiges zeichen: "); Serial.println(current); #endif } break; case STATE_VALUE: if(isDigit(current)){ inputbuffer[bufferIndex++] = current; } else if(current == '\n'){ inputbuffer[bufferIndex] = 0; value = atoi(inputbuffer); commandReceived(cmd, io, value); state = STATE_CMD; } else{ #ifdef DEBUG Serial.print("Ungültiges zeichen: "); Serial.println(current); #endif } break; } } }