LinuxCNC_ArduinoConnector/LinuxCNC_ArduinoConnector.ino
Alexander Richter fa6d5fa80a Support for WS2812 and PL9823 Digital LEDs
This Update includes the support of digital LEDs. Therefore we can now attach unlimited RGB LEDs to LinuxCNC. YAY
2023-03-25 14:38:12 +01:00

535 lines
13 KiB
C++

/*
LinuxCNC_ArduinoConnector
By Alexander Richter, info@theartoftinkering.com 2022
This Software is used as IO Expansion for LinuxCNC. Here i am using a Mega 2560.
It is NOT intended for timing and security relevant IO's. Don't use it for Emergency Stops or Endstop switches!
You can create as many digital & analog Inputs, Outputs and PWM Outputs as your Arduino can handle.
You can also generate "virtual Pins" by using latching Potentiometers, which are connected to one analog Pin, but are read in Hal as individual Pins.
Currently the Software provides:
- analog Inputs
- latching Potentiometers
- 1 absolute encoder input
- digital Inputs
- digital Outputs
The Send and receive Protocol is <Signal><PinNumber>:<Pin State>
To begin Transmitting Ready is send out and expects to receive E: to establish connection. Afterwards Data is exchanged.
Data is only send everythime it changes once.
Inputs = 'I' -write only -Pin State: 0,1
Outputs = 'O' -read only -Pin State: 0,1
PWM Outputs = 'P' -read only -Pin State: 0-255
Digital LED Outputs = 'D' -read only -Pin State: 0,1
Analog Inputs = 'A' -write only -Pin State: 0-1024
Latching Potentiometers = 'L' -write only -Pin State: 0-max Position
Absolute Encoder input = 'K' -write only -Pin State: 0-32
Command 'E0:0' is used for connectivity checks and is send every 5 seconds as keep alive signal
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
//###IO's###
//#define INPUTS
#ifdef INPUTS
const int Inputs = 16; //number of inputs using internal Pullup resistor. (short to ground to trigger)
int InPinmap[] = {32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48};
#endif
//#define OUTPUTS
#ifdef OUTPUTS
const int Outputs = 9; //number of outputs
int OutPinmap[] = {10,9,8,7,6,5,4,3,2,21};
#endif
//#define PWMOUTPUTS
#ifdef PWMOUTPUTS
const int PwmOutputs = 2; //number of outputs
int PwmOutPinmap[] = {12,11};
#endif
//#define AINPUTS
#ifdef AINPUTS
const int AInputs = 1;
int AInPinmap[] = {1}; //Potentiometer for SpindleSpeed override
int smooth = 200; //number of samples to denoise ADC, try lower numbers on your setup
#endif
//#define LPOTIS
#ifdef LPOTIS
const int LPotis = 2;
int LPotiPins[LPotis][2] = {
{2,9}, //Latching Knob Spindle Overdrive on A1, has 9 Positions
{3,4} //Latching Knob Feed Resolution on A2, has 4 Positions
};
int margin = 20; //giving it some margin so Numbers dont jitter, make this number smaller if your knob has more than 50 Positions
#endif
//#define ABSENCODER
#ifdef ABSENCODER
const int AbsEncPins[] = {27,28,31,29,30}; //1,2,4,8,16
#endif
#define STATUSLED
#ifdef STATUSLED
const int StatLedPin = 0; //Pin for Status LED
const int StatLedErrDel[] = {1000,10}; //Blink Timing for Status LED Error (no connection)
const int DLEDSTATUSLED = 1; //set to 1 to use Digital LED instead. set StatLedPin to the according LED number in the chain.
#endif
/* Instead of connecting LED's to Output pins, you can also connect digital LED's such as DLED or PL9823.
DLEDcount defines, how many Digital LED's you want to control. For Each a output Pin will be generated in LinuxCNC hal. There are two modes supported.
You set the color here. Set the Parameter as {Greeb,Red,Blue}. When LinuxCNC sends the state = 1, the LED will be set to the specified color. State = 0 will shut the LED to the specified off color.
This allows you to either turn the LED On at any specified color or to flip color to show Status change. (Red and Green for example)
*/
#define DLED
#ifdef DLED
#include <Adafruit_NeoPixel.h>
const int DLEDcount = 8; //How Many DLED LED's are you going to connect?
const int DLEDPin = 4;
int DledOnColors[DLEDcount][3] = {
{255,0,0},
{0,0,255},
{0,255,0},
{0,255,0},
{0,255,0},
{0,255,0},
{0,255,0},
{0,255,0}
};
int DledOffColors[DLEDcount][3] = {
{0,0,0},
{0,255,0},
{255,0,0},
{255,0,0},
{255,0,0},
{0,0,255},
{0,0,255},
{0,0,255}
};
Adafruit_NeoPixel strip(DLEDcount, DLEDPin, NEO_GRB + NEO_KHZ800);//Color sequence is different for LED Chipsets. Use RGB for WS2812 or GRB for PL9823.
#endif
//###Misc Settings###
const int timeout = 10000; // timeout after 10 sec not receiving Stuff
//#define DEBUG
//Variables for Saving States
#ifdef INPUTS
int InState[Inputs];
int oldInState[Inputs];
#endif
#ifdef OUTPUTS
int OutState[Outputs];
int oldOutState[Outputs];
#endif
#ifdef PWMOUTPUTS
int OutPWMState[PwmOutputs];
int oldOutPWMState[PwmOutputs];
#endif
#ifdef AINPUTS
int oldAinput[AInputs];
#endif
#ifdef LPOTIS
int Lpoti[LPotis];
int oldLpoti[LPotis];
#endif
#ifdef ABSENCODER
int oldAbsEncState;
#endif
//### global Variables setup###
//Please don't touch them
unsigned long oldmillis = 0;
unsigned long newcom = 0;
unsigned long lastcom = 0;
#define STATE_CMD 0
#define STATE_IO 1
#define STATE_VALUE 2
byte state = STATE_CMD;
char inputbuffer[5];
byte bufferIndex = 0;
char cmd = 0;
uint16_t io = 0;
uint16_t value = 0;
void setup() {
#ifdef INPUTS
//setting Inputs with internal Pullup Resistors
for(int i= 0; i<Inputs;i++){
pinMode(InPinmap[i], INPUT_PULLUP);
oldInState[i] = -1;
}
#endif
#ifdef AINPUTS
for(int i= 0; i<AInputs;i++){
pinMode(AInPinmap[i], INPUT);
oldAinput[i] = -1;
}
#endif
#ifdef OUTPUTS
for(int o= 0; o<Outputs;o++){
pinMode(OutPinmap[o], OUTPUT);
oldOutState[o] = 0;
}
#endif
#ifdef PWMOUTPUTS
for(int o= 0; o<PwmOutputs;o++){
pinMode(PwmOutPinmap[o], OUTPUT);
oldOutPWMState[o] = 0;
}
#endif
#ifdef STATUSLED
pinMode(StatLedPin, OUTPUT);
#endif
#ifdef ABSENCODER
pinMode(AbsEncPins[0], INPUT_PULLUP);
pinMode(AbsEncPins[1], INPUT_PULLUP);
pinMode(AbsEncPins[2], INPUT_PULLUP);
pinMode(AbsEncPins[3], INPUT_PULLUP);
pinMode(AbsEncPins[4], INPUT_PULLUP);
#endif
#ifdef DLED
initDLED();
#endif
//Setup Serial
Serial.begin(115200);
while (!Serial){}
while (lastcom == 0){
readCommands();
flushSerial();
Serial.println("E0:0");
#ifdef STATUSLED
StatLedErr(1000,1000);
#endif
}
}
void loop() {
readCommands(); //receive and execute Commands
comalive(); //if nothing is received for 10 sec. blink warning LED
#ifdef INPUTS
readInputs(); //read Inputs & send data
#endif
#ifdef AINPUTS
readAInputs(); //read Analog Inputs & send data
#endif
#ifdef LPOTIS
readLPoti(); //read LPotis & send data
#endif
#ifdef ABSENCODER
readAbsKnob(); //read ABS Encoder & send data
#endif
}
void comalive(){
#ifdef STATUSLED
if(millis() - lastcom > timeout){
StatLedErr(1000,10);
}
else{
if(DLEDSTATUSLED){controlDLED(StatLedPin, 1);}
else{digitalWrite(StatLedPin, HIGH);}
}
#endif
}
void sendData(char sig, int pin, int state){
Serial.print(sig);
Serial.print(pin);
Serial.print(":");
Serial.println(state);
}
void flushSerial(){
while (Serial.available() > 0) {
Serial.read();
}
}
#ifdef STATUSLED
void StatLedErr(int offtime, int ontime){
unsigned long newMillis = millis();
if (newMillis - oldmillis >= offtime){
if(DLEDSTATUSLED){controlDLED(StatLedPin, 1);}
else{digitalWrite(StatLedPin, HIGH);}
}
if (newMillis - oldmillis >= offtime+ontime){{
if(DLEDSTATUSLED){controlDLED(StatLedPin, 0);}
else{digitalWrite(StatLedPin, LOW);}
oldmillis = newMillis;
}
}
}
#endif
#ifdef OUTPUTS
void writeOutputs(int Pin, int Stat){
digitalWrite(Pin, Stat);
}
#endif
#ifdef PWMOUTPUTS
void writePwmOutputs(int Pin, int Stat){
analogWrite(Pin, Stat);
}
#endif
#ifdef DLED
void initDLED(){
strip.begin();
strip.setBrightness(50);
for (int i = 0; i < DLEDcount; i++) {
strip.setPixelColor(i, strip.Color(DledOffColors[i][0],DledOffColors[i][1],DledOffColors[i][2]));
}
strip.show();
#ifdef DEBUG
Serial.print("DLED initialised");
#endif
}
void controlDLED(int Pin, int Stat){
if(Stat == 1){
strip.setPixelColor(Pin, strip.Color(DledOnColors[Pin][0],DledOnColors[Pin][1],DledOnColors[Pin][2]));
#ifdef DEBUG
Serial.print("DLED No.");
Serial.print(Pin);
Serial.print(" set to:");
Serial.println(Stat);
#endif
}
else{strip.setPixelColor(Pin, strip.Color(DledOffColors[Pin][0],DledOffColors[Pin][1],DledOffColors[Pin][2]));
#ifdef DEBUG
Serial.print("DLED No.");
Serial.print(Pin);
Serial.print(" set to:");
Serial.println(Stat);
#endif
}
strip.show();
}
#endif
#ifdef LPOTI
int readLPoti(){
for(int i= 0;i<LPotis; i++){
int var = analogRead(LPotiPins[i][0])+margin;
int pos = 1024/(LPotiPins[i][1]-1);
var = var/pos;
if(oldLpoti[i]!= var){
oldLpoti[i] = var;
sendData('L', LPotiPins[i][0],oldLpoti[i]);
}
}
}
#endif
#ifdef AINPUTS
int readAInputs(){
unsigned long var = 0;
for(int i= 0;i<AInputs; i++){
int State = analogRead(AInPinmap[i]);
for(int i= 0;i<smooth; i++){// take couple samples to denoise signal
var = var+ analogRead(AInPinmap[i]);
}
var = var / smooth;
if(oldAinput[i]!= var){
oldAinput[i] = var;
sendData('A',AInPinmap[i],oldAinput[i]);
}
}
}
#endif
#ifdef INPUTS
void readInputs(){
for(int i= 0;i<Inputs; i++){
int State = digitalRead(InPinmap[i]);
if(InState[i]!= State){
InState[i] = State;
sendData('I',InPinmap[i],InState[i]);
}
}
}
#endif
#ifdef ABSENCODER
int readAbsKnob(){
int var = 0;
if(digitalRead(AbsEncPins[0])==1){
var += 1;
}
if(digitalRead(AbsEncPins[1])==1){
var += 2;
}
if(digitalRead(AbsEncPins[2])==1){
var += 4;
}
if(digitalRead(AbsEncPins[3])==1){
var += 8;
}
if(digitalRead(AbsEncPins[4])==1){
var += 16;
}
if(var != oldAbsEncState){
Serial.print("K0:");
Serial.println(var);
}
oldAbsEncState = var;
return (var);
}
#endif
void commandReceived(char cmd, uint16_t io, uint16_t value){
#ifdef OUTPUTS
if(cmd == 'O'){
writeOutputs(io,value);
}
#endif
#ifdef PWMOUTPUTS
if(cmd == 'P'){
writePwmOutputs(io,value);
}
#endif
if(cmd == 'E'){
lastcom=millis();
}
#ifdef DLED
if(cmd == 'D'){
controlDLED(io,value);
}
#endif
#ifdef DEBUG
Serial.print("I Received= ");
Serial.print(cmd);
Serial.print(io);
Serial.print(":");
Serial.println(value);
#endif
}
int isCmdChar(char cmd){
if(cmd == 'O'||cmd == 'P'||cmd == 'E'||cmd == 'L') {return true;}
else{return false;}
}
void readCommands(){
byte current;
while(Serial.available() > 0){
current = Serial.read();
switch(state){
case STATE_CMD:
if(isCmdChar(current)){
cmd = current;
state = STATE_IO;
bufferIndex = 0;
}
break;
case STATE_IO:
if(isDigit(current)){
inputbuffer[bufferIndex++] = current;
}else if(current == ':'){
inputbuffer[bufferIndex] = 0;
io = atoi(inputbuffer);
state = STATE_VALUE;
bufferIndex = 0;
}
else{
#ifdef DEBUG
Serial.print("Ungültiges zeichen: ");
Serial.println(current);
#endif
}
break;
case STATE_VALUE:
if(isDigit(current)){
inputbuffer[bufferIndex++] = current;
}
else if(current == '\n'){
inputbuffer[bufferIndex] = 0;
value = atoi(inputbuffer);
commandReceived(cmd, io, value);
state = STATE_CMD;
}
else{
#ifdef DEBUG
Serial.print("Ungültiges zeichen: ");
Serial.println(current);
#endif
}
break;
}
}
}